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Abstract

Database and data model evolution cause significant problems in the highly dynamic business environment that we
experience these days. To support the rapidly changing data requirements of agile companies, conceptual data models,
which constitute the foundation of database design, should be sufficiently flexible to be able to incorporate changes easily
and smoothly. In order to understand what factors drive the maintainability of conceptual data models and to improve
conceptual modelling processes, we need to be able to assess conceptual data model properties and qualities in an objective
and cost-efficient manner. The scarcity of early available and thoroughly validated maintainability measurement instru-
ments motivated us to define a set of metrics for Entity–Relationship (ER) diagrams. In this paper we show that these
easily calculated and objective metrics, measuring structural properties of ER diagrams, can be used as indicators of
the understandability of the diagrams. Understandability is a key factor in determining maintainability as model modifi-
cations must be preceded by a thorough understanding of the model. The validation of the metrics as early understand-
ability indicators opens up the way for an in-depth study of how structural properties determine conceptual data model
understandability. It also allows building maintenance-related prediction models that can be used in conceptual data mod-
elling practice.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the highly dynamic business environment we are in these days, existing business models become obsolete
at an ever-increasing pace and must therefore be designed with flexibility in mind to satisfy the needs of agile
companies. The constant reshaping of business models increases the volatility of the data requirements that
must be supported by companies’ data resource management policies and technologies. The ability to rapidly
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change databases and their underlying data models to support the needs of changing business models is a main
concern of today’s information managers. Database evolution produces significant challenges, high on the
research agenda of information system researchers.

It has been observed recently that conceptual data model quality, which is postulated as a major determi-
nant of the efficiency and effectiveness of data model evolution, is a main topic in current conceptual modelling
research [52]. Empirical studies point out that the quality of conceptual models affects the quality of the system
that is finally implemented [25]. Researchers who realize the importance of good conceptual models have pro-
posed quality frameworks to define the field and advance the discipline [51]. However, despite the proliferation
of conceptual modeling quality frameworks, generally agreed quality measures still have to be developed [49].

Model maintainability, i.e. the ability to easily change a model [38], seems to be a key factor in conceptual
data model evolution. In order to evaluate and, if necessary, improve the maintainability of conceptual data
models, data analysts need instruments to assess the maintainability characteristics of the models they are pro-
ducing. The earlier this assessment can be done, the better, as it has proven much more economical to evaluate
and improve quality aspects during the development process than afterwards [8].

Maintainability is, however, an external quality property meaning that it can only be assessed with respect
to some operating environment or context of use [28]. The maintainability of a conceptual data model depends
on its understandability (also called comprehensibility [31]) because the model must be understood first before
any desired changes to it can be identified, designed and implemented.1 Model understanding depends on
model properties such as structure, clarity and self-expressiveness that determine the ease of understanding,
but also on the data analyst’s familiarity with the model. In large organizations, the data analysts or data
model administrators that are responsible for maintaining the models may be different from the ones having
originally developed them. It is therefore in the interest of the organization to closely monitor the understand-
ability of its evolving set of conceptual data models.

External qualities such as understandability and maintainability are hard to measure objectively early on in
the modelling process. They generally need to be assessed in a subjective way, for instance using expert opin-
ions expressed through a formal or informal scoring system. For a more objective (and more cost-efficient)
assessment of external quality attributes, an indirect measurement based on internal model properties is
required [28]. If a significant relationship with conceptual data model understandability can be demonstrated,
then metrics of internal model properties can be used as indicators of sufficient or insufficient understandabil-
ity. Once constructed and validated, a measurement-fed prediction model can be implemented and employed
at a relatively low cost compared to an a-posteriori understandability assessment.

From a practical perspective, the availability of early applicable understandability metrics would allow data
analysts to perform

– A quantitative comparison of design alternatives, and therefore an objective selection between several con-
ceptual data model alternatives.

– An early assessment of conceptual data model understandability, even during the modelling activity, and
therefore a better resource allocation based on this assessment (e.g. redesigning high-risk models with
respect to understandability).

In this paper we define a set of 12 metrics for measuring structural properties of ER diagrams. Our focus on
ER modelling is justified by the observation that in today’s database design world, it is still the dominant
method of conceptual data modelling [15,50]. Our focus on structural properties is motivated by similar
research in the field of empirical software engineering, where properties that determine how software is struc-
tured like coupling, cohesion, and inheritance structures, have been shown to be major determinants of exter-
nal software quality properties, including understandability and maintainability [2,9,29,36,42,51]. From this
body of literature, a research model was derived that postulates a relationship between the structural proper-
ties of an ER diagram and the understandability of the ER diagram. In this model, the impact of the structural
1 Even though understandability has not been considered as a maintainability sub-characteristic by the ISO 9126 standard [38], software
quality research considers understandability to be a main factor influencing maintainability [9,28,36].
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properties on understandability is mediated through the cognitive complexity experienced by the person that
needs to understand the diagram.

The focus on structural properties is further motivated by our search for metrics that do not require human
judgement for calculating them. As syntactic model properties, the measurement of ER diagram structural
properties can be automated, which assures the cost-efficiency, the consistency and repeatability of the (indi-
rect) understandability measurements.

Apart from defining the metrics, the paper pays extensive attention to their validation. For the validation of
the metrics as ER diagram understandability indicators an experiment was conducted in which the relation-
ship between the metrics values and direct understandability assessments was statistically tested. Out of the 12
proposed metrics, six metrics were investigated in this experiment. For three metrics a statistical significant
correlation with understandability measurements was found. The results of the experiment indicate that the
understandability of an ER diagram is affected by the structural complexity that is contributed by the dia-
gram’s attributes and relationships, in particular the 1:1 and 1:N relationships. The more attributes and rela-
tionships, especially 1:1 and 1:N relationships, a diagram contains, the less understandable it is.

This paper is structured as follows. In section 2 we discuss related work in the field of metrics-based con-
ceptual data model quality assurance. After proposing our research model and metrics suite in section 3, we
proceed with the empirical validation of the metrics as ER diagram understandability indicators in section 4.
Finally, concluding remarks and an outline of our future work is presented in section 5.

2. Related work

A number of quality assurance frameworks for conceptual data models have been proposed [49], amongst
them the frameworks of Lindland et al. [43], Krogstie et al. [41], Moody et al. [48], Schütte and Rotthowe [59],
and Cherfi et al. [62]. Most of these frameworks provide quality definitions and criteria for conceptual models;
few of them, however, include quantitative measures (i.e. metrics) to evaluate the quality of conceptual data
models in an objective and cost-efficient way [49]. In this section we review the literature searching for metrics
that have been proposed for evaluating the quality of conceptual data models.

Eick [20] proposed a single quality metric for use with S-diagrams2 [18,19]. Three quality aspects, expres-
siveness, complexity and normality, are meant to be captured by this metric. To our knowledge there is no
published work confirming the validity of Eick’s metric.

Gray et al. [34] proposed a suite of metrics for evaluating quality characteristics of ER diagrams (complex-
ity and deviation from third normal form). These authors commented that empirical validation of these met-
rics has been performed, but they do not provide the results. Independently, Ince and Shepperd [37] used the
algebraic specification language OBJ to demonstrate the correctness of the underlying syntax of the metrics.
While useful for verifying the precise definition of the metrics, the study does not validate the metrics as being
related to the quality of ER diagrams.

Kesh [39] proposed a single metric for the quality of ER diagrams, combining different metrics of the onto-
logical and behavioural quality of ER diagrams. In most cases these metrics are Likert scales that need to be
rated in a subjective way. Kesh’s proposal also requires that, to obtain an overall quality assessment, each
measurement for each ontological quality factor to be weighted, but he did not suggest how to determine
the weights. No empirical evidence on the validity of the Kesh’s metric has been collected.

Moody et al. [48] proposed a data model quality management framework for evaluating the quality of ER
diagrams. This framework includes a set of metrics [47] which capture different quality characteristics of ER
diagrams. Some of the metrics are objectively calculated while others are based on subjective expert ratings. In
[47] an action research study is reported that used the framework to improve the quality of the data models
(product quality) and the process of developing data models (process quality) in a large Australian bank.
Based on this study, it was concluded that only four out of the 25 proposed metrics have benefits that out-
weigh their cost of collection. Among these four metrics, there is only one product metric, which is the number
of entities and relationships in an ER diagram. The other three metrics are estimates (development cost esti-
2 The S-diagram is a data model which was influenced by the work on the binary relation model [1] and the Semantic Database Model
(SDM) [35].



Table 1
Summary of quality metrics for conceptual data models

Authors Quality focus Scope Objective/
subjective

Validation? Tool?

Eick [20] Expressiveness, complexity, normalizedness S-diagrams Objective No No
Gray [34] Complexity, deviation from third normal

form
ER diagram Objective Unknown Yes

Kesh [39] Ontological quality, behavioural quality ER diagram Objective
and
subjective

No Yes

Moody
[46]

Completeness, integrity, flexibility,
understandability, correctness, simplicity,
integration, implementability

ER diagram Objective
and
subjective

Number of entities and
relationships metric validated in
an action research study

Yes

Cherfi
et al.
[62]

Specification dimension: legibility,
expressiveness, simplicity, correctness

Extended ER
diagram

Objective
and
subjective

No Yes

Usage dimension: completeness,
understandability
Implementation dimension:

implementability, maintainability
Maes and

Poels
[44]

Perceived semantic quality, ease of use,
usefulness, user satisfaction

Graphical
conceptual
models

Subjective Yes (via two controlled
experiments)

No
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mate) and process metrics useful for monitoring data model quality over time (the percentage of reuse and the
number of defects classified by quality factor).

Cherfi et al. [62] defined a framework considering three dimensions of quality: usage, specification and
implementation. For each dimension, quality criteria and corresponding metrics (not all of them are objective)
were defined. An example was shown to illustrate the application of the framework, but no empirical study
was carried out for demonstrating its validity.

Maes and Poels [44] proposed an instrument to measure the user perception of a conceptual model’s semantic
quality, ease of use and usefulness, and to measure how satisfied users are with the model. Two experiments were
conducted to validate the measures and to develop an underlying model relating the different measured variables.
Because they are perception-based, the measures are not objective and cannot be automatically calculated.

Table 1 compares the current proposals of conceptual data model quality metrics. The first column of the
table contains a reference to the study where the proposal has been published. In the second column, the qual-
ity focus of the metrics (i.e. the quality properties that are measured) is presented. The third column refers to
the scope of the metrics, meaning the kind of data model that is measured. The fourth column shows whether
the metrics are objective (e.g. measures) or subjective (e.g. quality scores or rating assigned by ‘expert judges’).
The fifth column questions whether the metrics have been validated. The last column reflects whether an auto-
mated tool exists for the metric calculation.

Summarising the related work, we can conclude that apart from the number of entities and relationships
metric of Moody [46], the metrics for ER diagrams found in the literature have not been validated. In other
words, their relationship with the external quality of ER diagrams has not been demonstrated.

3. Proposal of metrics for ER diagrams

We first present the research framework that justifies our choice of metrics and validation approach. Next
the metrics suite is defined, both informally and formally (using measurement theory). In a last sub-section the
calculation of the metrics is illustrated using an example ER diagram.

3.1. Research framework

The framework for our research is based on similar research in empirical software engineering, where
metrics-based prediction models have been proposed for external software qualities such as (lack of)
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fault-proneness and maintainability [10]. Although this stream of research is highly explorative in nature, con-
sensus is emerging regarding the role that structural software properties such as coupling, cohesion, size, and
inheritance structures play in determining software quality. Moreover, these properties already emerge at the
software design stage, allowing software quality to be controlled in an early phase of the software life-cycle.

Reasons why structural properties have an impact on quality have been suggested by Briand et al. [11,12]
(see Fig. 1). According to Briand et al., software that is big (i.e. having many composing elements) and has a
complex structure (i.e. showing many relationships between the software’s composing elements) results in a
high cognitive complexity, which is defined as the mental burden of the people that perform tasks on the soft-
ware. It is the high cognitive complexity that causes the software to display undesirable properties such as
being fault-prone or requiring much effort to maintain, simply because it is more difficult to understand,
develop, modify or test such software.

Briand et al.’s model, which they refer to as a ‘causal chain’, has been the basis for much of the recent
research on empirically-derived metrics-based software quality prediction [23,33,45,57]. In addition, this
model was also used by Erickson and Siau [26] to investigate the complexity of UML [53]. Although there
have been attempts to provide a theoretical basis to the model, using cognitive models that consider the infor-
mation processing limitations of human memory [21,22], the model has not been directly tested due to the dif-
ficulty involved in measuring cognitive complexity. Nevertheless, the (indirect) relationship between software’s
structural properties and external quality properties has been repeatedly demonstrated. According to Briand
et al. [12], it is difficult to imagine what could be alternative explanations for these results besides cognitive
complexity mediating the effect of structural properties on software quality.

We will use Briand et al.’s model as a working hypothesis and framework for our research, and thus con-
sider an ER diagram as a software artefact. Given that people have to deal with conceptual data models (e.g.
data analysts developing them, future system users validating them, database developers using them to design
databases, etc.), cognitive complexity is at stake. Hence, if it is assumed that the structural properties of an ER
diagram affect its understandability (via cognitive complexity), then metrics that measure these structural
properties can be used as early and low-cost understandability indicators. So what is needed is a metrics suite
that captures to the best possible extent the ER diagram’s structural properties, and secondly a validation of
these metrics as understandability indicators.

3.2. Metric definition

According to our research framework, an ER diagram’s structural properties affect the cognitive complex-
ity that is associated with the diagram. Cognitive complexity is, however, difficult to measure. To distinguish
with cognitive complexity, we will refer to the collection of structural properties as structural complexity, which
is a measurable kind of complexity. According to Systems Theory, the complexity of a system is based on the
number of (different types of) elements and on the number of (different types of) (dynamically changing) rela-
tionships between them [54]. Hence, the structural complexity of an ER diagram is determined by the different
elements that compose it.

Fenton has formally proven that a single metric of complexity cannot capture all possible aspects or view-
points on complexity [27]. Therefore, it is not advisable to define a single metric for ER diagram structural
complexity (like Moody’s number of entities and relationships metric [46]). The approach that we take is to
propose several metrics, each one focussing on the use of a different ER modelling construct in the ER dia-
gram. This approach also allows investigating which of the ER diagram’s structural properties have an impact
on understandability, and which do not.
Structural 
properties

Cognitive 
complexity

External 
quality 

attributes

affect affects

Fig. 1. Relationship between structural properties, cognitive complexity, and external quality attributes [11,12].
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The ER diagrams for which the structural complexity metrics are proposed, build upon the constructs
offered in the original ER model [14], plus a few additional constructs such as IS-A relationships. Instead
of presenting a well-defined meta-model, we only list the modelling constructs (see Table 2). Precise definitions
of their semantics can be found in classic textbooks on ER modelling [24]. Although the constructs listed are
the ones that are frequently encountered in ER diagrams, other constructs can be added to the list. Likewise,
the metrics suite presented here can be extended to cover the use of such other constructs.

Note also that, although we do not use the word ‘type’ (mainly in order to shorten the names of the metrics
proposed in the next sub-section), all constructs are considered at the type level. The information contained
within an ER diagram does not allow the measurement of structural complexity at the instance level.

The metrics included in the suite are shown in Table 3. As can be seen these ‘count’ metrics capture the
usage of the constructs listed in Table 2.

In Table 3 the metrics are informally defined, in natural language. For each metric we have also formulated
a formal definition based on measurement theory [40,56], allowing a precise and unambiguous interpretation
of what is measured and how this is done. Measurement theory is a normative theory prescribing the condi-
tions that must be satisfied in order to use mathematical functions as ‘metrics’. Measurement theoretic
approaches to metrics definition propose methods to verify whether these conditions hold.

The approach used to formally define the ER diagram metrics of Table 3 is the DISTANCE approach [56],
which uses the mathematical concept of ‘distance’ and its measurement theoretic interpretation as main cor-
nerstones. The basic idea of DISTANCE is to define properties of objects in terms of distances between the
objects and other objects that serve as reference points (or norms) for measurement. The larger these distances,
the greater the extent to which the objects are characterised by the properties. This particular definition of
object properties allows them to be measured by functions that are called ‘metrics’ in mathematics. Metrics
are functions that satisfy the metric axioms, i.e. the set of axioms that are necessary and sufficient to define
distance metrics (in the sense of measurement theory) [63].

The application of DISTANCE to the ER diagram metrics of Table 3 is straightforward. Each metric quan-
tifies the extent to which a particular ER modelling construct is used in an ER diagram. The NA metric, for
instance, captures the usage of the attribute construct in an ER diagram. For the purpose of measuring the
NA metric of an ER diagram, the diagram can be abstracted into its set of attributes. The larger this set
(i.e. the bigger the distance between this set and the empty set), the greater the structural complexity of the
ER diagram due to the usage of attributes. In [55], the symmetric difference model, i.e. a particular instance
of Tversky’s set theoretic contrast model [63], was used to show that when properties are represented as sets,
the cardinality of the set qualifies as a metric (in both the mathematical and measurement theoretic sense).
Hence, the NA metric, which returns the cardinality of the set of attributes defined in an ER diagram, mea-
sures the distance between an ER diagram’s set of attributes and the empty set (which is used as the reference
point for measurement). In other words, the NA metric measures the structural complexity of an ER diagram
that is contributed by the usage of the attribute construct.
Table 2
ER modelling constructs measured by the metrics suite

ER modelling construct Remarks

Entities Strong Weak
Attributes Simple Composite

Non-derived Derived
Single-valued Multi-valued

Relationships ‘common’ IS-A ‘common’ relationships, sometimes also called ‘associations’, are the
ones considered in Chen’s original ER model; IS-A relationships are
generalization/specialization relationships as considered in most
extensions of the ER model.

Reflexive Binary n-ary Kinds of ‘common’ relationships according to the number of entity
types involved.

1:1 1:N M:N Kinds of ‘common’ reflexive or binary relationships according to the
connectivities (maximum multiplicities) involved.



Table 3
Metrics for ER diagrams

Metric name Metric description

NE The Number of Entities metric is defined as the number of entities within an ER diagram, considering both weak and
strong entities.

NA The Number of Attributes metric is defined as the total number of attributes defined within an ER diagram, taking into
account not only entity attributes but also relationship attributes. In this number all attributes are included (but not the
composing parts of composite attributes).
By convention, the NA metric does not count the attributes that a sub-type inherits from its super-type (i.e. these
attributes are counted only once, as attributes of the super-type).

NDA The Number of Derived Attributes metric is defined as the number of derived attributes within an ER diagram. The value
of NDA is always strictly less than the value of NA.

NCA The Number of Composite Attributes metric is defined as the number of composite attributes within an ER diagram. This
value is less than or equal to the NA value.

NMVA The Number of Multi-valued Attributes metric is defined as the number of multi-valued attributes within an ER diagram.
Again, this value is less than or equal to the NA value.

NR The Number of Relationships metric is defined as the total number of relationships within an ER diagram, excluding IS-
A relationships.

NM:NR The Number of M:N Relationships metric is defined as the number of M:N relationships within an ER diagram. The
value of NM:NR is less than or equal to the NR value.

N1:NR. The Number of 1:N Relationships metric is defined as the total number of 1:N and 1:1 relationships within an ER
diagrama. Also this value is less than or equal to the NR value.

NN_AryR The Number of N-Ary Relationships metric is defined as the number of N-Ary relationships within an ER diagram. Its
value is less than or equal to the NR value.

NBinaryR The Number of Binary Relationships metric is defined as the number of binary relationships within an ER diagram.
Again, the value is less than or equal to the NR value.

NRefR The Number of Reflexive Relationships metric is defined as the number of reflexive relationships within an ER diagram.
Its value is less than or equal to the value of the NR metric.

NIS_AR The Number of IS_A Relationships metric is defined as the number of IS_A relationships within an ER diagram. In this
case, we consider one relationship for each super-type/sub-type pair.

a The number of 1:1 relationships was not used as a separate metric because these relationships are considered a subset of the 1:N
relationships.
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As an example, the complete formal definition of the NA metric is presented in Appendix A. Analogous
definitions for the other ER diagram metrics can be found in [32].

The measurement theoretic theorems associated with distance measurement are incorporated in the DIS-
TANCE approach, meaning that the conditions specified by these theorems are met when defining metrics
with DISTANCE. This ensures that the validity of the metrics as measures of the ER diagram structural prop-
erties is formally proven within the framework of measurement theory. An important pragmatic consequence
of the explicit link with measurement theory is that the resulting metrics define ratio scales.

3.3. Illustration

As an example, we will apply the outlined metrics to the ER diagram shown in Fig. 2, taken from Elmasri
and Navathe [24].

Table 4 shows the value of each metric calculated for the example presented above.

4. Empirical validation3

To validate the structural complexity metrics as understandability indicators, we conducted an empirical
study using the laboratory experiment format. The structural complexity of the ER diagrams used in this
experiment was measured using the metrics suite defined in the previous section. We also independently
assessed the understandability of the diagrams, either by measuring the study participants’ performance on
3 All the experimental material can be provided by the corresponding author upon request.



PERSON

DEPARTMENT EMPLOYEE

ALUMNUS

STUDENT

PROJECT
STAFF FACULTY

STUDENT -
ASSISTANT

GRADUATE _
STUDENT

UNDERGRADUATE_
STUDENT

RESEARCH _ASSISTANT TEACHING _ASSISTANT

Name

Percent_Time

Position Rank

DegreeProgram

MajorDegreeYear

Degrees

Location

Number_
Employees

Name

Number
Salary

Major_Dept

Number

Street

City

Age

Address

Sex

Birth_DateSSN

Last_Name

First_Name

Class

Project Course

Name

Number

Location

Is_A

Is_A

Is_A

Is_A Is_A

CONTROLS WORKS_IN

WORKS_FOR

MANAGES

1:N

1:1

M:N

1:N

Entity Relationship symbols

entity relationship simple
attribute

composite
attribute

multivaluated
attribute

IS_A 
relationship

derived
attribute

Fig. 2. Example of an ER diagram [24].

Table 4
Metric values for the ER diagram of Fig. 2

Metric Value Explanation

NE 13 Entities = PROJECT, DEPARTMENT, EMPLOYEE, STAFF, FACULTY, STUDENT-ASSISTANT,
ALUMNUS, PERSON, STUDENT, GRADUATE_STUDENT, UNDERGRADUATE_STUDENT,
RESEARCH_ASSISTANT, TEACHING_ASSISTANT

NA 23 Non-derived, single-value, simple attributes (not part of composite attributes) = PROJECT(Name, Number,
Location), DEPARTMENT(Name, Number), EMPLOYEE(Salary), STAFF(position), FACULTY(Rank),
STUDENT_ASSISTANT(Percent_Time), PERSON(SSN, Sex, Birth_Date) STUDENT(Major_Dept),
GRADUATE_STUDENT(Degree_Program), UNDERGRADUATE_STUDENT(Class),
RESEARCH_ASSISTANT(Project), TEACHER_ASISSTANT(Course)
Derived attributes = DEPARTMENT(Number_Employees), PERSON(Age)
Composite attributes = PERSON(Name, Address) and ALUMNUS(Degrees)
Multivalued attributes = DEPARTMENT (Location)

NDA 2 Derived attributes = DEPARTMENT(Number_Employees), PERSON(Age)
NCA 3 Composite attributes = PERSON(Name, Address) and ALUMNUS(Degrees)
NMVA 1 Multivalued attributes = DEPARTMENT (Location)
NR 4 Relationships = CONTROLS, WORKS_FOR, MANAGES, WORKS_IN
NM:NR 1 M:N relationships = WORKS_IN
N1:NR 3 1:N relationships = WORKS_FOR, CONTROLS, MANAGES
NN_AryR 0 N-ary relationships = {}
NBinaryR 4 Binary relationships = CONTROLS, WORKS_FOR, MANAGES, WORKS_IN
NIS_AR 11 IS_A relationships = (PERSON, EMPLOYEE), (PERSON, ALUMNUS), (PERSON. STUDENT),

(EMPLOYEE, STAFF), (EMPLOYEE, FACULTY), (EMPLOYEE, STUDENT_ASSISTANT),
(STUDENT, STUDENT_ASSISTANT), (STUDENT, GRADUATE_STUDENT), (STUDENT,
UNDERGRADUATE_STUDENT), (STUDENT_ASSISTANT, RESEARCH_ASSISTANT),
STUDENT_ASSISTANT, TEACHING_ASSISTANT)

NRefR 0 Reflexive relationships = {}
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maintenance-related tasks that require an understanding of the diagram (i.e. diagram comprehension tasks) or
by measuring the participants’ perceptions of diagram understandability. The validity of the metrics was
examined by investigating the existence and statistical significance of the correlation between the measurement
values for structural complexity and understandability.

Three pilot studies were conducted before the experiment proper (see Section 4.1). These pilot studies were
mainly aimed at testing the experimental materials and measures and informed us on potential threats to study
validity. The lessons drawn from these preliminary studies were used to alleviate the risks of these threats
occurring in the ‘real’ experiment (which is presented in Section 4.2). The experimental process followed
was based on a framework for experimental software engineering research proposed by Wholin et al. [65].

4.1. Pilot studies

The participants in the first pilot study were nine staff members of the Department of Information Systems
and Technologies at the University of Castilla-La Mancha and seven students enrolled in the final year (i.e.
fifth year of studies) of Computer Science at the same university. We selected 24 ER diagrams from a larger
repository of diagrams that was collected specifically for the purpose of experimentation and metrics valida-
tion from case-studies and educational textbooks on database design [16,17]. The diagrams in this repository
modelled different Universes of Discourse (UoD) covering a wide range of application domains such as the
medical field, science, education, business (both commerce and industry), culture (e.g. arts, leisure, sports),
and the broad societal/political field (including administration and law). They represent typical examples of
conceptual data models that are used as main input for the logical database design process. The ER diagram
of Fig. 2 is an example from this repository.

When selecting diagrams for the sample used in the pilot study, we tried to obtain a wide range of metric
values (see Table 5). However, as our repository did not show sufficient variability in the values of four of the
proposed 12 metrics (i.e. NDA, NCA, NMVA, NRefR), most of the diagrams in the sample had a value of
zero for these metrics. These metrics were therefore not considered in the subsequent data analysis.

The dependent variable, understandability, was measured by assessing participants’ perceptions, using a
scale consisting of seven linguistic labels (see Table 6). A within-subject design was used, i.e. each participant
had to rate the understandability of each of the 24 diagrams (in a different order for each participant).

The analysis of the obtained data indicated a significant positive correlation between the understandability
rating of a diagram and seven (out of eight tested) metrics (NE, NA, NR, N1:NR, NM:NR, NBinaryR and
NIS_AR). The correlation was not significant for the NN_AryR metric. A plausible reason is that the
NN_AryR metric is zero for most of the 24 diagrams (with hindsight we could have omitted also this metric
from the data analysis).

In the second pilot study, we tested an alternative procedure for measuring the understandability of ER dia-
grams. In the first pilot study the participants’ perception of a diagram’s understandability was not based on
any experience with performing tasks using the diagram considered. The judgement of the participants might
therefore be based on previous experiences with understanding ER diagrams, and is in this sense subjective.
So, in the second pilot study a more objective measurement of understandability was obtained based on the
performance of participants on a task that requires understanding of the diagram.

The participants were 31 students enrolled in the third year of Computer Science in the Department of
Information Systems and Technologies at the University of Castilla-La Mancha in Spain. Four diagrams (dif-
ferent from the diagrams in the first pilot study) were selected from the repository. As the study was within-
subject and hence for each diagram a task had to be performed, we limited the number of diagrams to four.
We made sure that the selected diagrams showed a good spread in metric values for the metrics that had sig-
nificant correlations with maintainability ratings in the first pilot study, the only exception being NIS_AR (see
Table 7). Hence, the metrics considered were NE, NA, NR, NM:NR, N1:NR and NBinaryR. Because in the
four diagrams all relationships were binary, the NR and NBinaryR values were the same for each diagram.

The task to be performed consisted of answering questions about the diagram, which allowed us to evaluate
if the participant really understood the information conveyed by the diagram. For each diagram there were the
same number of questions (five) and these questions were conceptually similar and posed in an identical order.



Table 5
Metric values for each ER diagram in the first pilot study

ER diagram Metric values Median of understandability ratings

NE NA NR NM:NR N1:NR NN_AryR NBinaryR NIS_AR

DP1 5 19 5 2 3 0 5 0 2
DP2 12 44 11 3 8 2 9 4 3
DP3 6 23 7 0 7 0 7 2 4
DP4 9 33 11 5 6 0 11 2 5
DP5 13 15 11 8 3 0 11 5 2
DP6 6 16 4 4 0 1 3 3 3
DP7 6 16 40 4 0 1 3 3 2
DP8 11 33 8 1 7 0 8 4 4
DP9 6 45 7 0 7 0 7 0 3
DP10 4 2 3 0 3 0 3 0 1
DP11 9 31 6 1 5 0 6 2 3
DP12 6 17 3 0 3 0 3 2 2
DP13 12 11 5 4 1 0 5 9 3
DP14 10 35 11 4 11 1 10 0 3
DP15 8 29 6 0 6 0 6 2 3
DP16 6 29 4 4 0 2 2 0 3
DP17 6 34 5 2 3 0 5 0 3
DP18 6 15 5 0 5 0 5 0 2
DP19 6 16 4 2 2 0 4 0 2
DP20 8 19 5 5 0 0 5 3 3
DP21 5 10 3 2 1 0 3 1 3
DP22 9 26 5 2 3 0 5 4 2
DP23 8 12 5 3 2 0 5 4 3
DP24 11 32 7 1 6 0 7 4 4

Table 6
Understandability linguistic labelsa

Extremely difficult
to understand

Very difficult to
understand

A bit difficult to
understand

Neither difficult nor
easy to understand

Quite easy to
understand

Very easy to
understand

Extremely easy
to understand

a For carrying out the data analysis we associated numbers to each linguistic label from 1 to 7. In this way 1 relates to extremely easy to
understand and 7 relates to extremely difficult to understand.

Table 7
ER diagrams used in the first experiment

ER diagrams Metric values

NE NBinaryR NA N1:NR NM:NR

DP25 3 2 11 0 2
DP26 5 6 15 1 5
DP27 8 10 21 4 6
DP28 5 6 13 1 5
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Each participant had to write down the time spent answering the questionnaire, by recording the initial time
and final time.

The dependent variable, understandability was measured using the following performance-based measures:

– Understandability Time (UT): The time needed to understand an ER diagram (expressed in minutes).
– Understandability Effectiveness (UEffec): The number of correct answers reflects how well the participants

performed the required understandability tasks.
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– Understandability Efficiency (UEffic): The number of correct answers divided by UT relates the under-
standing performance of the participants to their effort (in terms of time spent).

Using Spearman’s correlation coefficient, each of the collected metrics was correlated separately to the mea-
sures for the dependent variable. All metrics showed a significant positive correlation with UT and a signif-
icant negative correlation with UEffic. The correlation with UEffec was not significant. All metrics (except
NA) had exactly the same correlation coefficient for an understandability measure. This is a consequence
of the use of the non-parametric Spearman’s correlation coefficient, which is based on the relative ranking
of the diagrams with respect to structural complexity. Each of the four diagrams takes the same position in
this ranking according to each of the metrics (only NA gives a different ranking), which explains the observed
pattern in correlation coefficients.

To be able to identify possible differences in the effects of the structural complexity metrics, diagrams
should be used that can be ranked in different ways according to the metric values. This was tested in a third

pilot study were nine diagrams (different from those in the previous pilot studies) were carefully selected such
that differences in relative rankings were obtained depending on the metric considered. The metrics considered
were those of the second pilot study, as well as NN_AryR (as in the first pilot study) and NRefR which for this
sample showed reasonable variability (see Table 8). Participants were 27 students enrolled in the third year of
Computer Science in the Department of Information Systems and Technologies at the University of Castilla-
La Mancha. For measuring understandability the procedures of the first and second pilot studies were com-
bined, so both a perception-based measure and the UT, UEffec and UEffic performance-based measures were
used. The questions for the understanding task were similar as in the second pilot study (i.e. five questions per
diagram). The understandability rating was made after performing the task.

In the third pilot study, the Spearman’s correlation coefficients revealed that all ER diagram structural com-
plexity metrics considered showed a significant positive correlation with the subjective ratings of understand-
ability (i.e. diagrams with higher values for these metrics were perceived as more difficult to understand), a
significant positive correlation with UT (i.e. task completion took longer for diagrams with higher metric val-
ues) and a significant negative correlation with UEffic (i.e. the efficiency of understanding decreases with
increasing metric values). Consistent with the second pilot study, there was no significant correlation with
UEffec.

Although the values of the correlation coefficients were now different for the different metrics, they were
either all significant or all non-significant. Hence, again no differences in the effects of different structural com-
plexity metrics could be distinguished. We realized that for the diagrams used in the pilot studies the structural
complexity metrics were heavily intercorrelated, and thus for example if NE is correlated with NA, whenever
NE is correlated with the measures of understandability, NA is also likely to be correlated. A particular con-
cern for the design of the experiment is therefore to reduce as much as possible the correlations between the
structural complexity metrics, without developing artificial diagrams (e.g. a diagram with 20 entities and only
2 relationships).
Table 8
ER diagrams used in the third pilot study

ER diagrams Metric values

NE NA NR N1:NR NM:NR NBinaryR NN_AryR NRefR

DP29 2 2 6 2 0 2 0 0
DP30 5 15 5 5 0 5 0 0
DP31 8 27 9 9 0 9 0 0
DP32 11 45 15 12 3 13 2 3
DP33 12 38 7 5 2 5 2 0
DP34 13 54 17 14 3 15 2 3
DP35 7 30 5 5 0 4 1 0
DP36 13 55 17 14 3 15 2 3
DP37 15 41 9 6 3 7 2 0
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4.2. The experiment

Using the GQM template for goal definition ([3,4]), the goal of the experiment is defined as follows:
Analyse
 ER diagram structural complexity metrics
For the purpose of
 Evaluating
With respect to
 the capability to be used as indicators of ER diagram understandability
From the point of
view of
the researchers
In the context of
 Professors and Ph.D. students at the Department of Information Systems and

Technologies at the University of Castilla-La Mancha
4.2.1. Design
The participants were 17 professors and 11 Ph.D. students at the Department of Information Systems and

Technologies at the University of Castilla-La Mancha. A within-subjects design was used to cancel out differ-
ences between the participants. The participants were more experienced in ER modelling than the participants
in the pilot studies. They were chosen for convenience (being colleagues of the corresponding author), but
were not informed about the goal of the study (in order to avoid experimenter bias). Being colleagues, they
were motivated to perform well in the study.

The experimental material consisted of a guide explaining the ER notation and eight ER diagrams related
to different UoDs, including culture/leisure (library operations, planning of tourist trips), science (biological
processes), commerce (purchasing), industry (production process), and conducting business in general (debt
financing, order taking and invoicing). The familiarity of the participants with the domains modelled was
assessed as moderate. None of the participants was an expert in either of the domains modelled, but some
personal (rather than professional) experience with one or more subject areas was plausible.

Like the diagrams used in the pilot studies, six diagrams were taken from the repository we built for exper-
imentation and they originated from educational textbooks and real cases. Two diagrams were taken from
[7,31], where they were used in other empirical studies on conceptual data modelling. Given their origin,
the diagrams in our sample were mainly proposed for educational and research purposes. However, they
are representative examples of conceptual data models that are used as input for the logical database design
process. Although not extremely large, some diagrams were realistically large with NE values going up to 39.
An example (diagram DE4) is shown in Appendix B.

We considered only six metrics (NE, NA, NR, NM:NR, N1:NR, NIS_AR) out of our initial proposal of 12
metrics (see Table 3). Our experience with the pilot studies motivated us to focus on this core set of metrics,
trying to provide as much variance as possible and at the same time controlling (to the best possible extent) the
correlation between these metrics. Once selected, most of the diagrams were repeatedly manipulated to obtain
more favourable sample characteristics with respect to the range of metric values and the correlation between
the metrics. To do this exercise simultaneously for 6 metrics was already a big challenge and extending this
core set of metrics was not feasible. One simplification we made was to include only binary relationships
and IS_A relationships in the diagrams. As a consequence, the NBinaryR metric takes the same values as
the NR metric and the NRefR and NN_AryR metrics take on zero values for all diagrams. We further
avoided the use of composite, multi-valued and derived attributes.

The structural complexity values of the diagrams are presented in Table 9, while Table 10 provides a
correlational analysis of the metrics. As can be seen, some metric pairs are still significantly correlated
(NE and NR, NR and N1:NR, NE and N1:NR) but further reducing the correlation between the number
of entities and the number of relationships (most of which are binary 1:N) would have resulted in arti-
ficial diagrams. In a ‘normal’ ER diagram, the number of entities and relationships would tend to be
correlated.

Each diagram had a test enclosed which included a questionnaire to assess whether the participants really
understood the information conveyed by the diagram. Each questionnaire contained exactly the same number
of questions (10) and the questions for each of the eight diagrams were conceptually similar (for an example



Table 9
ER diagrams used in the experiment

ER diagram Metric values

NE NA NR NM:NR N1:NR NIS_AR

DE1 7 35 5 1 4 2
DE2 10 33 5 1 4 4
DE3 8 34 9 6 3 2
DE4 15 30 12 3 9 4
DE5 11 50 17 10 7 2
DE6 37 79 24 8 16 4
DE7 39 52 17 4 13 11
DE8 20 28 16 1 15 2
Mean 18.38 42.63 13.13 4.25 8.88 3.88
Max 39.00 79.00 24.00 10.00 16.00 11.00
Min 7.00 28.00 5.00 1.00 3.00 2.00
St. Dev. 12.81 17.17 6.62 3.45 5.22 3.04

Table 10
Spearman’s correlation coefficients between the metrics in the experiment (significant correlations shown in bold)

NE NA NR NM:NR N1:NR NIS_AR

NE 1 0.2857 0.9341 0.2683 0.8862 0.639
p = 0.4927 p = 0.0006 p = 0.5204 p = 0.0033 p = 0.0880

NA 0.2857 1 0.3592 0.6587 0.21557 0.33130
p = 0.4927 p = 0.3820 p = 0.0756 p = 0.6081 p = 0.4503

NR 0.9341 0.3592 1 0.4172 0.9036 0.4526
p = 0.0006 p = 0.3820 p = 0.3037 p = 0.0020 p = 0.2601

NM:NR 0.2683 0.6587 0.4172 1 0.1472 0.0267
p = 0.5204 p = 0.0756 p = 0.3037 p = 0.7278 p = 0.9499

N1:NR 0.8862 0.2155 0.9036 0.1472 1 0.4001
p = 0.0033 p = 0.6081 p = 0.0020 p = 0.7278 p = 0.3259

NIS_AR 0.639 0.3129 0.4526 0.0267 0.4001 1
p = 0.0880 p = 0.4503 p = 0.2601 p = 0.9499 p = 0.3259

Table 11
Understandability linguistic labels for the experimenta

Very difficult to
understand

A bit difficult to
understand

Neither difficult nor easy to
understand

Quite easy to
understand

Very easy to
understand

a For carrying out the data analysis, we assigned numbers to each linguistic level: ‘Very easy to understand’ corresponded to 1 and ‘Very
difficult to understand’ corresponded to 5.
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see Appendix B). To cancel out potential confounding effects of domain familiarity, participants were
instructed that the answers to the questions had to be found in the diagrams.

Understandability was measured via the judgement of the participants about how easy or difficult they find
it to understand the diagrams (an ordinal scale), according to five linguistic labels (see Table 11). We called
this perception-based measure Subjective Understandability (SubUnd). Furthermore, as in the second and
third pilot studies, understandability was also measured using performance-based measures:

– The time needed to understand an ER diagram (expressed in minutes, called Understandability Time (UT)).
– The number of correct answers reflects how well the participants performed the required understandability

tasks, called Understandability Effectiveness (UEffec).
– The number of correct answers divided by UT relates the understanding performance of the participants to

their effort (in terms of time spent). We called this measure Understandability Efficiency (UEffic).
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The hypotheses we will to test for achieving our goal are

– H1,0: There is no significant correlation between the metrics (NE, NA, NR, N1:NR, NM:NR, NIS_AR)
and the Subjective Understandability. H1,1:�H1,0

– H2,0: There is no significant correlation between the metrics (NE, NA, NR, N1:NR, NM:NR, NIS_AR)
and the Understandability Time: H2,1:�H2,0

– H3,0: There is no significant correlation between the metrics (NE, NA, NR, N1:NR, NM:NR, NIS_AR)
and the Understandability Effectiveness. H3,1:�H3,0

– H4,0: There is no significant correlation between the metrics (NE, NA, NR, N1:NR, NM:NR, NIS_AR)
and the Understandability Efficiency. H4,1: �H4,0

4.2.2. Data analysis and interpretation

We obtained 224 data points, from 28 subjects and 8 diagrams per subject. All of the subjects answered all
the questions, so the number of answers in all cases is 10.

Before analysing the data for testing our hypotheses and as the time and efficiency measures (UT, UEffic)
are meaningless unless a minimum level of quality is delivered, we excluded those data that have UEffec <0.80
(see Table 12), i.e. those data have more than two answers wrong (8 data points). Table 12 reflects that the
correctness of the responses is high, because most of the cases (64%) have the UEffec value 1, which means
that all the answers were correct.

Analysing the UEffic data, we found five outliers, as the box-plot of Fig. 3 shows. These five points were
excluded from the analysis.

From the obtained 224 data points, after cleansing the data, we considered 211 data points for testing our
hypotheses.

We started with the Kolmogorov–Smirnov test, which indicated that data distributions were not normal,
hence we decided to use a non-parametric test statistic, i.e. Spearman’s correlation coefficient (with a signif-
icance level set at a = 0.05). The obtained Spearman’s correlation coefficients are shown in Table 13.

The findings that Table 13 reveals are

– Relating to hypotheses 1 and 3, it seems that only the number of relationships (NR) and the number of 1:N
relationships (N1:NR) (which includes by definition also the 1:1 relationships) affect the subjective percep-
tion of the understandability of the ER diagrams (SubUnd) and understandability effectiveness as measured
by the number of correct answers to diagram understanding questions given (UEffec). The more binary
relationships (in general) and 1:1 and 1:N relationships (in particular) an ER diagram has, the lower the
number of understanding questions correctly answered and the higher the perceived difficulty in under-
standing the diagram.
Table 12
Distribution of understandability effectiveness by ER diagram

ER diagrams UEffec

0.6 0.7 0.8 0.9 1

DE1 0 2 1 4 21 28
DE2 0 1 5 13 9 28
DE3 0 1 1 9 17 28
DE4 0 0 3 7 18 28
DE5 0 0 2 8 18 28
DE6 3 0 1 9 15 28
DE7 0 0 1 2 25 28
DE8 0 1 2 4 21 28

3 5 16 56 144 224

1.34% 2.23% 7.14% 25.00% 64.29% 100.00%



Fig. 3. Box-plot of understandability efficiency by ER diagram.

Table 13
Spearman’s correlation coefficients between the structural complexity metrics and the understandability measurements and ratings
(significant correlations shown in bold) (experiment)

NE NA NR NM:NR N1:NR NIS_AR

UT 0.1259 0.1596 0.1637 0.0750 0.1750 0.0600
p = 0.071 p = 0.023 p = 0.017 p = 0.275 p = 0.011 p = 0.3870

SubUnd 0.1340 0. 077 0.1510 0.0300 0.2070 0.0310
p = 0.052 p = 0.263 p = 0.029 p = 0.667 p = 0.003 p = 0.650

UEffec �0.1180 �0.0890 �0.1420 �0.0530 �0.1250 0.0350
p = 0.088 p = 0.200 p = 0.039 p = 0.447 p = 0.004 p = 0.613

UEffic �0.1230 �0.1530 �0.1630 �0.0760 �0.1770 �0.0550
p = 0.0750 p = 0.027 p = 0.018 p = 0.270 p = 0.0100 p = 0.423
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– Relating to hypotheses 2 and 4, the diagrams with higher metric values for NA, NR and N1:NR take more
time to understand (UT) and have lower understandability efficiency (UEffic) values. Hence, the structural
complexity of a diagram that is contributed by attributes and (1:1 and 1:N) relationships has a negative
impact on the time required and the efficiency of participants in understanding a diagram.

– A remarkable result (and contrary to the pilot studies) is that the number of entities (NE), which can be
considered as the purest measure of diagram size in our metrics suite, was not significantly correlated to
any of the understandability measures. Hence, we found no evidence that the size of a diagram, as measured
by the number of entities it contains, has an impact on the diagram’s understandability.

– Although the presence of many-to-many relationships (NM:NR) and IS-A relationships (NIS_AR) could
vary by a factor 1:10 and was quite high for some diagrams (maximum NM:NR was 10 and maximum
NIS_AR was 11), these metrics were not significantly correlated to any of the understandability measures.
Hence no effect on diagram understandability could be demonstrated.

5. Discussion and conclusions

5.1. Summary, results and research contributions

We proposed a set of metrics for measuring structural properties of ER diagrams. In total 12 metrics
were defined for various ER modelling constructs that when used in an ER diagram determine the diagram’s
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structural complexity. Following empirical software engineering research, an artefact with a high structural
complexity is also characterised by a high cognitive complexity which causes problems when understanding
and maintaining the artefact. Hence, measurement of internal properties like structural complexity allows
the assessment and prediction of the artefact’s external quality.

Our metrics measure only syntactic properties of ER diagrams and thus can be calculated automati-
cally, without human intervention or judgment, ensuring the cost-efficiency, consistency and repeatability
of the measurements. The metrics are also theoretically valid because they were defined following the DIS-
TANCE framework [56], which means that, from a measurement theory point of view, they are proven to
be measures of an ER diagram’s structural complexity. Moreover, the use of DISTANCE guarantees that
the metrics can be used as ratio scale measurement instruments, which greatly facilitates the analysis of
measurement data.

We also evaluated the capability of the proposed metrics to be used as indicators of ER diagram under-
standability. A laboratory experiment was conducted with the aim of testing the hypothesized correlation
between the proposed metrics and both performance-based and perception-based measures of ER diagram
understandability. The empirical validation was limited to a core set of six metrics capturing the ER diagram
structural complexity that is contributed by the diagram’s entities, attributes, binary associations between enti-
ties (with different types of maximum cardinalities), and IS-A relationships. Six other metrics that were pro-
posed, including fine-grained metrics for different kinds of attributes and metrics for different grades of
relationships (i.e. unary, binary, higher-order), were not tested because of difficulties in finding a sufficiently
large set of realistic ER diagrams with both a wide spread in values for all metrics considered and little inter-
correlation between the metrics. It was therefore decided to focus first on a set of six core metrics, i.e. the NE,
NA, NR, NIS_AR, N1:NR, NM:NR metrics.

The result of the experiment was that three metrics, i.e. NA, NR and N1:NR, could be validated as indi-
cators of ER diagram understandability. The correlation between these metrics and some or all of the under-
standability measures was statistically significant. The correlation between the other three metrics, i.e. NE,
NM:NR and NIS_AR, and the understandability measures was not significant.

The experiment showed that the correctness of understanding, as measured through the answers given to
diagram comprehension questions (referred to as the UEffec measure in the experiment description), was
affected by the number of relationships (NR) and the number of 1:1 and 1:N relationships (N1:NR). The more
relationships an ER diagram contains, and in particular the more 1:1 and 1:N relationships it contains, the
lower the correctness scores. Also the perceived ease of understanding an ER diagram decreases when the
number of (1:1 and 1:N) relationships increases.

The same two metrics were also correlated to measures of the efficiency by which an ER diagram can be
understood (i.e. time it takes to understand the diagram and correctness of understanding relative to under-
standing effort). Also the number of attributes (NA) had an impact here. Hence, the more relationships, and
especially the more 1:1 and 1:N relationships, and the more attributes an ER diagram contains, the more time
it takes to understand it. Of particular interest here is that the NA metric was not correlated to the NR and
N1:NR metrics, meaning that the number of attributes and the number of (1:1 and 1:N) relationships each on
their own affect understandability.

An equally interesting result is that the number of entities (NE) had no direct effect on understand-
ability (whatever measure was used). Through its correlation with the number of relationships, the num-
ber of entities might of course have an indirect understandability effect (i.e. diagrams with a lot of
entities normally also have a lot of relationships). However, the experiment result allows identifying those
structural complexity aspects that directly affect diagram understanding (relationships and attributes) as
opposed to other aspects, like diagram size (number of entities), for which no evidence of a direct impact
on understandability was found. Likewise no understandability effect was found for the number of many-
to-many relationships (NM:NR) and the number of IS-A relationships (NIS_AR), both of which were
not correlated to any of the other structural complexity metrics for the sample of diagrams used in
the experiment.

Summarizing, the research contribution of this paper is the definition and validation of three ER diagram
structural complexity metrics (NA, NR and N1:NR) that can be used as early, easily and objectively
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calculated indicators of ER diagram understandability. Our research shows that the understandability of an
ER diagram is affected by its structural complexity where the contributors to this structural complexity are the
diagram’s attributes and relationships, in particular the 1:1 and 1:N relationships. The more attributes and
(1:1 and 1:N) relationships a diagram contains, the less understandable it is. There is no evidence that the size
of a diagram in terms of number of entities affects understandability, unless through its expected correlation
with the number of relationships.
5.2. Implications and recommendations

The correlation analysis that we performed suggests that when building maintenance-related prediction
models for ER diagrams, it is advised to include at least one metric related to the number of attributes and
at least one other metric related to the number of relationships, which should preferably include counts of
the binary 1:1 and 1:N relationships. These structural complexity aspects seem to have the strongest impact
on subjectively experienced understandability and on the efficiency and effectiveness in understanding ER dia-
grams. We found no evidence that to predict understandability a model should also include a measure of dia-
gram size (in terms of the number of entities). Of course, indirectly, diagram size has an impact on
understandability because diagrams with a large number of entities would normally also have many relation-
ships. This result is interesting given that the only ER diagram structural complexity metric previously vali-
dated (the number of entities and relationships metric [48]) does not distinguish between structural
complexity that is due to heavy interconnections between entities and structural complexity that stems from
diagram size.

Our study helps understanding what factors may inhibit ER diagram comprehension. From this under-
standing, further research may derive quality-focused ER diagram design knowledge which can then be incor-
porated into the modelling language, method and process. Our experiment suggests that to control diagram
understandability, primary attention should be paid to the number of attributes and the number of relation-
ships, especially binary 1:1 and 1:N relationships, contained in the diagram. An interesting avenue for further
research is the development and evaluation of ER diagram refactoring rules that reduce the number of attri-
butes and binary 1:1 and 1:N relationships, replacing them by semantically equivalent modelling solutions. We
provide two examples here, while acknowledging and stressing that they are tentative and need further
research:

• If a diagram contains entities that have one or more identical attributes, then generalization and inheritance
can be applied to reduce the number of attributes. The reduction in NA will improve understandability time
and efficiency, while the increase in NE and NIS_AR will not have an effect on understandability. Of
course, the formulation of this rule is speculative, given that our experiment does not allow directly testing
whether it would indeed improve understandability. We did for instance not separately measured the attri-
butes that were shared by two or more entities. To evaluate this rule, a controlled experiment must be con-
ducted comparing the treatment (application of the rule) to a control group. The diagram(s) in the control
group should contain entities with identical attributes.

• Our results do not support the practice of objectifying M:N relationships. Under some conditions an M:N
relationship between two entities A and B can be replaced by a connecting entity C which is related to A via
an 1:N relationship and to B via another 1:N relationship. The attributes of the M:N relationship would
become attributes of the new entity C. Objectification thus reduces the value of NM:NR, keeps NA con-
stant, but increases the values of NE and N1:NR. According to our results, the net effect on understand-
ability would be negative since adding 1:N relationships lowers understandability whereas the other
changes have no effect. Our study thus actually supports the opposite of objectification and favours the
use of an M:N relationship instead of two 1:N relationships and a connecting entity. Again, we formulate
this rule with the necessary precaution because our study does not directly validate it. A problem with our
current study is that we did not separately measured entity attributes and relationship attributes (maybe
they have different effects on understandability?). Only controlled experimentation comparing both situa-
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tions can provide definite answers. One such experiment has been conducted in a related study on UML
class diagrams (see [58]) where it was shown that objectification reduces comprehension if users are not
modelling experts.

5.3. Limitations and future work

A first limitation of our research is that only half the metrics suite was evaluated in the empirical study. The
capability to be used as understandability indicators was not tested for the three detailed metrics that distin-
guish specific kinds of attributes, i.e. composite attributes (NCA), multi-valued attributes (MVA) and derived
attributes (NDA). With hindsight, this is not really a problem given that the majority of tools available for
drawing ER diagrams do not incorporate facilities for specifying composite attributes, multivalued attributes
and derived attributes, and that therefore most of the designers do not use these constructs in their ER
diagrams.

Also the three metrics that distinguish relationships according to their grade, i.e. unary (NRefR), bin-
ary (NBinaryR), and higher-order (NN-AryR), were not tested. As commented before, the ER diagrams
of the experiment were chosen and further manipulated such that wide metric value ranges were obtained
and intercorrelations between the metrics were avoided. This design control turned out to be a difficult
exercise to be performed for all metrics simultaneously. Hence, the choice was made to include only the
most common form of relationships (i.e. binary relationships) in the diagrams (making the NR values the
same as the NBinaryR values). Future research may wish to extend our study to find out if there are
understandability differences between relationships of different grades. For instance, a controlled experi-
ment can be conducted to investigate if diagram users understand better binary relationships or ternary
relationships.

A second limitation relates to choices made when proposing our suite of 12 metrics. For instance, we have
no separate metric for weak entities, although many people have difficulties in understanding them.4 Another
choice made was to make no distinction between entity attributes and relationship attributes (see also our
discussion on objectification in the previous sub-section). However, according to the Bunge–Wand–Weber
representational model [64], which is often used to evaluate conceptual modelling languages, relationships
with attributes should be prohibited because they reduce the ontological clarity of models [61]. Likewise
our metrics suite distinguishes types of binary relationships based on maximum cardinalities, but does not
include separate metrics for differences in minimum cardinalities, i.e. whether relationships are optional or
mandatory (or partial versus full). Here the BWW model prohibits the use of optional entity properties,
including optional relationships in which the entities participate [61]. Controlled experiments testing these
ontological predictions have been undertaken by fellow researchers (see [7,13,31]). In the absence of definite
results more work needs to be done. The results of these studies may inform us on how to further refine our
metrics suite.

A third limitation is the weaknesses inherent in our choice of research method, i.e. the experiment, and the
design choices we made. Because of the difficulty of controlling the independent variable, the observed corre-
lations do not demonstrate per se a causal relationship between structural complexity and understandability.
They only provide empirical evidence of it. Only experiments where all included metrics would be varied in a
controlled manner and all other factors would be held constant, could really demonstrate causality. On the
other hand, it is difficult to imagine what could be alternative explanations for our results besides a relation-
ship between structural complexity and understandability.

The use of academics and doctoral students as experiment participants might produce a problem to external
validity. However, as long as the tasks performed do not require high levels of industrial experience, experi-
ments involving non-professionals (e.g. students) can be justified [5].

Further empirical validation, including internal and external replication of the experiment presented in
this paper, is needed. We also need to carry out additional empirical studies, for instance with practitio-
ners, in order to extend our current study and to further build up the cumulative knowledge on ER dia-
gram structural complexity and understandability. Finally, more data related to ‘real projects’ is needed to
4 We thank an anonymous reviewer for this remark.
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strengthen the evidence that these metrics can be used as practical ER diagram understandability
indicators.

As several authors remark [22,30] the practical utility of metrics would be enhanced if meaningful thresh-
olds could be identified. However a recent series of studies which looked at thresholds for object-oriented met-
rics [6,23] demonstrate that there are no threshold values for contemporary object-oriented metrics. To our
knowledge, studies trying to find thresholds values for ER diagram metrics do not exist, so we believe that
could be a good issue to tackle in the future.

Pending is also to carry out similar experimental work but focusing not only on understandability but also
on modifiability, in order to ascertain if there exists a relationship between the structural complexity of ER
diagrams and the performance of subjects when doing modification tasks. In addition it could be valuable
to investigate if understandability is related with modifiability, i.e. if the performance of the subjects when
understanding an ER diagram is related with the performance of the modification tasks [60].
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Appendix A. Distance-based definition of the NA metric

In Section 3 the NA metric was defined as the number of attributes defined within an ER diagram. The
metric intends to measure an aspect of structural complexity which basically states that the more attributes
defined within an ER diagram, the higher its structural complexity.

Using the method described in [55,56] the DISTANCE-based definition of a metric consists of five steps:

– Finding a measurement abstraction. The set of objects that are characterised by a structural complexity
property is the Universe of ER diagrams (notation: UERD), i.e. the set of all conceivable syntactically
correct ER diagrams that are relevant to some Universe of Discourse (UoD) (which does not need to be
specified any further). The structural complexity property for which the NA metric is proposed (referred
to as pty) is the number of attributes defined within an element of UERD.Let UA be the Universe of
Attributes relevant to the UoD. The set of attributes defined within an ERD 2 UERD, denoted by
SA(ERD), is a subset of UA. The sets of attributes defined within the ER diagrams of UERD are ele-
ments of the power set of UA (notation: }(UA)). As a consequence we can equate the set of measure-
ment abstractions (referred to as M in the DISTANCE procedure) to }(UA) and define a mapping
function absNA as:
absNA : UERD! }ðUAÞ : ERD! SAðERDÞ

This function simply maps an ER diagram onto its set of attributes, which is a sufficient representation of
an ER diagram for the aspect of structural complexity considered.

– Defining distances between measurement abstractions. A set of elementary transformation functions for
}(UA), denoted by Te�}(UA), must be found such that any set of attributes can be transformed into
any other set of attributes. It was shown in [55] that to transform sets, only two elementary transforma-
tion functions are required: one that adds an element to a set and another that removes an element from
a set. So, given two sets of attributes s1 2 }(UA) and s2 2 }(UA), s1 can always be transformed into s2

by removing first all attributes from s1 that are not in s2, and then adding all attributes to s1 that are in
s2, but were not in the original s1. In the ‘worst case scenario’, s1 must be transformed into s2 via an
empty set of attributes. Formally, Te�}(UA) = {t0�}(UA), t1�}(UA)}, where t0�}(UA) and t1�}(UA) are
defined as
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t0�}ðUAÞ : }ðUAÞ ! }ðUAÞ : s! s [ fag; with a 2 UA

t1�}ðUAÞ : }ðrmUAÞ ! }ðUAÞ : s! s� fag; with a 2 UA
– Quantifying distances between measurement abstractions. It was shown in [63] that the symmetric
difference model, which is a particular instance of Tversky’s contrast model, can always be used to
define a metric (in the mathematical sense) for distances between sets. Hence, we define the metric
d}(UA) as
d}ðUAÞ : }ðUAÞ � }ðUAÞ ! R : ðs; s0Þ ! js� s0j þ js0 � sj
This definition is equivalent to stating that the distance between two sets of attributes, as defined by the
shortest sequence of elementary transformations between these sets, is measured by the count of elementary
transformations in the sequence. Note that for any element in s but not in s 0 and for any element in s 0 but
not in s, an elementary transformation is required.

– Finding a reference abstraction. For the structural complexity property that is considered, the obvious
reference point for measurement is the empty set of attributes. It can be argued that an ER diagram with
no attributes defined has the lowest structural complexity that can be imagined. Therefore we define the
mapping function refNA as
refNA : UERD! }ðUAÞ : ERD! ;

– Defining a metric for the property. The NA metric can be formally defined as a function that returns for any

ERD 2 UERD the value of the metric d}(UA) for the pair of sets SA(ERD) and ;:

8ERD 2 UERD : NAðERDÞ ¼ d}ðUAÞðSAðERDÞ; ;Þ
¼ jSAðERDÞ � ;j þ j; � SAðERDÞj
¼ jSAðERDÞj
As a consequence, a metric that returns the number of attributes in an ER diagram qualifies as a metric (in the
sense of measurement theory) of the structural complexity property that is determined by the quantity of attri-
butes defined within an ER diagram.

Appendix B. An example of the experimental material

Here, we show, as an example, the ER diagram DE4 and its understandability and rating tasks.

Diagram DE4

(a) Take the attached diagram.
(b) Write down the starting time (indicating hh:mm:ss)
(c) Answer the following questions (YES/NO):

1. Is an order represented as an entity?
2. Must all warehouses have warehouses an insurance ID attribute?
3. Can a payment be related with more than one order header?
4. Must a supplier supply at least one stock item?
5. Must each stock item be associated with at least one order line in some order?
6. Can the stock items be stored in warehouses that are not own warehouses?
7. Is ‘tax’ an attribute of order summary?
8. Must an order have at least one order line?
9. Must each warehouse contain at least one stock item?

10. Must each Invoice Header be associated with only one line item?

(d) Write down the finishing time (indicating hh:mm:ss)
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Description

Line#

Amount Line Item Assoc w/-(1, N)

Invoce#
Invoice Header

Date

(1, 1)

For

(1, N)

Payment#

Payment

Date

(0, N)

Total

         Tax Invoice
Summary

Assoc w/-

(1, 1)

(1, 1)

Assoc w/-

(1, 1)

             Sale Clerk Id
Name

Order Header
Order#

Date

(1, N)

For

(0, 1)

(0, 1)

Total
       Tax Order 

Summary

Assoc w/-
(1, 1)

(1, 1)

Made By

#Name

 Cust      

Address
Customer

(0, N)

(1,1)

Assoc w/-

(1,1)

(0, N)

Description

Item#
Price

Order Line

Line#

Assoc w/-

(1, 1)

(1, N)

Assoc w/-

Item#
Description

Stock Item

(0,N)

(1,1)

Stored In

Warehouse Address

   Warehouse#
Warehouse

(1, N) (1, N)

Name
Address

Supplier

#Supplier

Supplies

(1,N)

(1, N)

            #Sumary

            #Sumary

Habitual
Supplier

Occasional
Supplier

Own Warehouse Another Place
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(e) According to your criterion, rate how easy or difficult were for you to understand the diagram (mark

with a cross).
Very difficult to
understand
A bit difficult to
understand
Neither difficult nor easy to
understand
Quite easy to
understand
Very easy to
understand
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[11] L. Briand, J. Wüst, S. Ikonomovski, H. Lounis, Investigating quality factors in object-oriented designs: An industrial case-study, in:

21st International Conference on Software Engineering, Los Angeles, CA, 1999, pp. 345–354.
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